recovery <- cmdstan_model("models/recovery.stan")
data <- read_tsv("../modelling/data/derived_data/data_rec.tsv", col_types = cols()) %>%
select(-y) %>%
filter(variable %in% c("ba", "diversity_q0_gen")) %>%
select(-sitenum, -plotnum) %>%
pivot_wider(names_from = variable, values_from = value) %>%
na.omit() %>%
filter(!(site %in% c("Manare", "Montagne Tortue", "Nelliyampathy",
"Uppangala", "BAFOG", "Sao Nicolau",
"Kabo", "Mil", "Corinto",
"Peixoto", "Iwokrama", "Antimary", "Peteco"))) %>%
mutate(sitenum = as.numeric(as.factor(site))) %>%
mutate(plotnum = as.numeric(as.factor(paste(site, plot)))) %>%
arrange(sitenum, plotnum, rel_year)
ind <- data %>%
select(site, plot, sitenum, plotnum) %>%
unique()
ba_priors <- read_tsv(file.path("..", "modelling",
"chains", paste0("equ_", "ba"), "mu.tsv")) %>%
select(-sitenum) %>%
left_join(select(ind, site, sitenum) %>% unique()) %>%
na.omit()
div_priors <- read_tsv(file.path("..", "modelling",
"chains", paste0("equ_", "diversity_q0_gen"),
"mu.tsv")) %>%
select(-sitenum) %>%
left_join(select(ind, site, sitenum) %>% unique()) %>%
na.omit()
mdata <- list(
n = nrow(data),
s = max(data$sitenum),
p = max(data$plotnum),
ba = data$ba,
y = data$diversity_q0_gen,
t = data$rel_year - 3,
site = data$sitenum,
plot = data$plotnum,
site_plot = ind$sitenum,
mu_ba_theta_s = ba_priors$median,
sigma_ba_theta_s = ba_priors$sd,
mu_theta_s = div_priors$median,
sigma_theta_s = div_priors$sd
)
fit <- recovery$sample(
mdata,
chains = 4,
parallel_chains = 4,
save_warmup = FALSE,
refresh = 100,
output_dir = "chains/jointgen0/"
)