This page describes all sites and plots coordinates preparation and visualization.
Code
sites %>%
mutate (plot = as.character (plot)) %>%
unnest (plot) %>%
filter (site == "Iwokrama" ) %>%
select (
plot,
` Location (WGS UTM 21N) SW corners...5 ` ,
` Location (WGS UTM 21N) SW corners...6 `
) %>%
rename (
lat = ` Location (WGS UTM 21N) SW corners...5 ` ,
lon = ` Location (WGS UTM 21N) SW corners...6 `
) %>%
sf:: st_as_sf (coords = c ("lat" , "lon" ), crs = "EPSG:32621" ) %>%
sf:: st_transform (4326 ) %>%
sf:: st_coordinates () %>%
as_data_frame () %>%
write_tsv ("test.tsv" )
Code
library (googlesheets4)
site_names <- read_sheet ("https://docs.google.com/spreadsheets/d/1fq2owxMBLBwwibcdw2uQQFxnIhsMbaH4Qcj_xUwVvSQ/edit?usp=sharing" , 2 ) %>% #nolint
separate_rows (site_raw, sep = "," )
sites <- googlesheets4:: read_sheet ("https://docs.google.com/spreadsheets/d/1fq2owxMBLBwwibcdw2uQQFxnIhsMbaH4Qcj_xUwVvSQ/edit?gid=0#gid=0" ) %>% # nolint
mutate (plot = as.character (plot)) %>%
unnest (plot) %>%
select (site, plot, latitude, longitude) %>%
mutate (latitude = ifelse (site == "Kibale" , 0.45 , latitude)) %>%
mutate (longitude = ifelse (site == "Kibale" , 30.25 , longitude)) %>%
rename (site_raw = site) %>%
left_join (site_names) %>%
select (site, plot, latitude, longitude) %>%
na.omit () %>%
write_tsv ("data/derived_data/sites.tsv" )
We obtained the following sites and plots distribution globally.
Code
read_tsv ("data/derived_data/sites.tsv" ) %>%
st_as_sf (coords = c ("longitude" , "latitude" ), crs = 4326 ) %>%
leaflet () %>%
addTiles () %>%
addProviderTiles ("Esri.WorldImagery" , group = "ESRI" ) %>%
addMarkers (
label = ~ paste (site, plot),
labelOptions = labelOptions (noHide = FALSE )
)
Sites and plots locations.
Most sites showed a small dispersion of plots covering up 10 km2 at the exception of BAFOG & Sao Nicolau covering tenth of km2 and Iwokrama covering more than 150 km2 .
Code
read_tsv ("data/derived_data/sites.tsv" ) %>%
st_as_sf (coords = c ("longitude" , "latitude" ), crs = 4326 ) %>%
group_by (site) %>%
summarise (n = n ()) %>%
st_convex_hull () %>%
mutate (area = as.numeric (set_units (st_area (.), "km^2" ))) %>%
st_drop_geometry () %>%
ggplot (aes (n, area)) +
geom_point () +
theme_bw () +
xlab ("Number of plots" ) +
ylab (expression (paste ("Area [" , km^ 2 , "]" ))) +
ggrepel:: geom_text_repel (aes (label = site), size = 2 ) +
scale_y_sqrt () +
scale_x_log10 ()
Code
sites <- read_tsv ("data/derived_data/sites.tsv" ) %>%
group_by (site) %>%
select (- plot) %>%
summarise_all (mean)
if (! file.exists ("data/derived_data/site" ))
dir.create ("data/derived_data/site" )
for (s in sites$ site) {
file <- file.path ("data/derived_data/site" ,
paste0 (s, ".tsv" ))
if (! file.exists (file)) {
print (paste0 ("Writting " , s))
sites %>%
filter (site == s) %>%
write_tsv (file)
} else {
print (paste0 ("Skipping " , s, ", file already exists." ))
}
}
paste0 ("sites: [" , paste0 ('"' , sites$ site, '"' , collapse = ", " ), "]" ) %>% cat ()