Code
<- read_tsv("../modelling/data/derived_data/data_rec.tsv", col_types = cols()) %>%
data select(-y) %>%
filter(variable %in% c("ba", "diversity_q1_sp")) %>%
select(-sitenum, -plotnum) %>%
pivot_wider(names_from = variable, values_from = value) %>%
na.omit() %>%
filter(!(site %in% c("Manare", "Montagne Tortue", "Nelliyampathy",
"Uppangala", "BAFOG", "Sao Nicolau",
"Kabo", "Mil", "Corinto",
"Peixoto", "Iwokrama", "Antimary", "Peteco"))) %>%
mutate(sitenum = as.numeric(as.factor(site))) %>%
mutate(plotnum = as.numeric(as.factor(paste(site, plot)))) %>%
arrange(sitenum, plotnum, rel_year) %>%
gather(variable, y, -plot, -year, -site, -treatment, -harvest_year,
-longitude, -harvest_year_min, -rel_year, -sitenum, -plotnum)
<- read_tsv("chains/joint-diversity_q1_sp-trajectories.tsv")
trajectories <- read_tsv("chains/joint-diversity_q1_sp-parameters.tsv")
parameters parameters
# A tibble: 727 × 14
variable mean median sd mad q5 q95 rhat ess_bulk
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 lp__ 16454. 1.65e+4 121. 135. 1.62e+4 1.66e+4 2.34 4.98
2 gamma 0.0483 4.88e-2 0.218 0.204 -3.05e-1 4.03e-1 1.00 2068.
3 gamma -0.146 -1.59e-1 0.166 0.163 -4.00e-1 1.41e-1 1.07 44.9
4 gamma -0.454 -4.53e-1 0.252 0.243 -8.91e-1 -5.08e-2 1.02 1016.
5 gamma -0.131 -1.11e-1 0.419 0.384 -8.29e-1 4.97e-1 1.01 1733.
6 gamma -0.0785 -8.15e-2 0.302 0.289 -5.87e-1 4.32e-1 1.02 524.
7 gamma 0.145 1.55e-1 0.336 0.334 -4.22e-1 6.87e-1 1.02 218.
8 gamma 0.188 1.72e-1 0.211 0.195 -1.21e-1 5.66e-1 1.01 1215.
9 gamma -0.0867 -5.45e-2 0.316 0.381 -6.07e-1 3.67e-1 1.65 6.53
10 gamma -0.217 -2.13e-1 0.173 0.170 -5.03e-1 6.41e-2 1.01 1787.
# ℹ 717 more rows
# ℹ 5 more variables: ess_tail <dbl>, sitenum <dbl>, site <chr>, plotnum <dbl>,
# plot <chr>