Code
<- read_tsv("../modelling/data/derived_data/data_rec.tsv", col_types = cols()) %>%
data select(-y) %>%
filter(variable %in% c("ba", "diversity_q0_sp")) %>%
select(-sitenum, -plotnum) %>%
pivot_wider(names_from = variable, values_from = value) %>%
na.omit() %>%
filter(!(site %in% c("Manare", "Montagne Tortue", "Nelliyampathy",
"Uppangala", "BAFOG", "Sao Nicolau",
"Kabo", "Mil", "Corinto",
"Peixoto", "Iwokrama", "Antimary", "Peteco"))) %>%
mutate(sitenum = as.numeric(as.factor(site))) %>%
mutate(plotnum = as.numeric(as.factor(paste(site, plot)))) %>%
arrange(sitenum, plotnum, rel_year) %>%
gather(variable, y, -plot, -year, -site, -treatment, -harvest_year,
-longitude, -harvest_year_min, -rel_year, -sitenum, -plotnum)
<- read_tsv("chains/joint-diversity_q0_sp-trajectories.tsv")
trajectories <- read_tsv("chains/joint-diversity_q0_sp-parameters.tsv")
parameters parameters
# A tibble: 709 × 14
variable mean median sd mad q5 q95 rhat ess_bulk
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 lp__ 16799. 1.68e+4 108. 103. 1.66e+4 1.70e+4 1.97 5.52
2 gamma -0.285 -2.80e-1 0.191 0.182 -5.94e-1 2.88e-2 1.00 1551.
3 gamma -0.104 -9.94e-2 0.123 0.122 -3.11e-1 8.83e-2 1.01 927.
4 gamma -0.314 -3.19e-1 0.168 0.164 -5.81e-1 -3.06e-2 1.02 255.
5 gamma -0.266 -2.55e-1 0.291 0.272 -7.45e-1 1.97e-1 1.00 2126.
6 gamma -0.0332 -2.45e-2 0.189 0.188 -3.53e-1 2.63e-1 1.01 963.
7 gamma -0.640 -6.97e-1 0.959 1.18 -1.91e+0 9.66e-1 1.73 6.22
8 gamma 0.103 9.63e-2 0.187 0.188 -1.98e-1 4.06e-1 1.12 24.3
9 gamma -0.179 -1.88e-1 0.154 0.155 -4.15e-1 8.24e-2 1.23 12.6
10 gamma -0.220 -2.17e-1 0.152 0.150 -4.73e-1 2.73e-2 1.00 2078.
# ℹ 699 more rows
# ℹ 5 more variables: ess_tail <dbl>, sitenum <dbl>, site <chr>, plotnum <dbl>,
# plot <chr>